Thermal Energy Storage

Thousands of Peak Megawatts for Texas

Thermal Energy Storage Benefits Texas

- THOUSANDS of Peak MW's can be recovered in Texas with Thermal Energy Storage (TES)
- Prior to de-Regulation TES was widely deployed

 A market transformation program for TES needs to be adopted to break down market barriers created by de-regulation

Energy Storage Concept

- Energy is stored during "off-peak" periods, then distributed during "peak" periods.
- Examples of energy storage systems:
 - Batteries in a mobile phone
 - The human body
 - Thermal Energy Storage (TES)

Commercial / Industrial TES System

Ice Storage

- Energy in an ice phase
- Relatively small footprint, ideal for urban applications

Chilled Water

- Energy in the chilled water liquid phase
- Economical in larger applications

Like BIG "rechargeable batteries"

TES with Chilled Water District Cooling Systems

TES - Proven Technology in Texas

SCHOOL
CAMPUSES

GOVERNMENT &
MUNICIPALITIES

PRIVATE INDUSTRY & DATA CENTERS

ERCOT Grid - Hourly Load

Source: ERCOT, www.ercot.com

ERCOT Grid - \$/MWh

Source: ERCOT, www.ercot.com

2013 Peak Load Week - Generation by Fuel Type

Note - no changes to existing reserves requirements were assumed for this analysis

Applicability

PUCT recognizes peak is due mostly to HVAC

- Nighttime generation is efficient and plentiful
- Cooling at night to cool buildings or boost generation efficiency can help manage peak summer demand and intermittency issues from renewable energy

Electric Peak Reduction

0.6 MW

1,000 Ton Chiller

0.0 MW

TES Tank

By utilizing a TES tank and the excess capacity of a chiller plant at night time, the electric chillers and associated equipment could be de-energized during the peak period.

Electric Load Profile

With TES:

- permanent electric load shift from peak periods to off-peak periods
- energy reduction by taking advantage of cooler ambient conditions at nighttime and running chillers at their optimum conditions

Thermal Storage Benefits utilities, environment, rate payers and users!

- Affordable solution to reduce peak summer demand
- Reduce source energy consumption
- Reduce cooling costs for rate payers
- Storage systems can optimize HVAC systems and improve efficiency
- Prepares owners for Demand Response programs
- Enhance the renewable energy goals by increasing their output and their ROI

Thermal Energy Storage Provides:

Low Operating & Life Cycle Costs Reduced
Source Fuel
Consumption
& Emissions

Energy Transformation & Demand Response Ready

Barriers to Grow TES Market in Texas

TES Myths from Years Ago

- Complicated and expensive
 - Read Energy Storage Myths, from ASHRAE Journal, September 2003.

Knowledge about TES Technologies

 Much has changed including better products, best practices, and controls, but information has not been widely distributed

Electricity Rates and Confusion

- Rates that support storing energy are sometimes dismissed
- Rate confusion leads to unfavorable life cycle cost modeling
- Lack of historical rate information leads to inaction.

Inconsistent Utility Signals or Lack of Promotion of TES

- Leads to market confusion and inaction
- Missing significant incentive

Measurement & Verification Method and IPMVP

Compliant with International Performance Measurement & Verification Protocol

- Option B typically used measuring all parameters of relevant equipment
- Measurement & Verification documents efficiency and/or cost avoidance savings
- Facilitates remote monitoring, automated data collection

Measurement & Verification Method and IPMVP

Compliant with International Performance Measurement & Verification Protocol

- Early identification, isolation & resolution of issues with post-installation reporting
- Regular spot checks and continual communication of performance
- M&V involved throughout project development, implementation, and performance period

Texas Needs Thermal Energy Storage

- Utility Efficiency Programs should include a Market Transformation Program to help reinvigorate market adoption of TES
- We are working with Retail Electric Providers to encourage offerings of rates to recognize the value of TES
- TES associated with a chiller at a gas turbine plant would provide double benefits and a 5X capacity benefit:
 - Chilled inlet air for gas turbines increases the operating capacity by
 5 times that of the power needed to run the chillers
 - The TES shifts the chilling to off-peak, removing the parasitic load, and allows the chilling system to run more efficiently during cooler ambient conditions at night

Case Study #1

Demand Side

San Antonio, TX - Lackland AFB

Scope of Work:

- 0.79 MG TES tank added to one of the chilled water district cooling systems
- Chilled water control strategy that takes advantage of offpeak electric rates

San Antonio, TX - Lackland AFB

Project Results:

 Electric load shift of almost 1 MW

Case Study #2

Supply Side

Natural Gas Power Plant Performance

Performance goes down as outside air temp goes up

Turbine Inlet Chilling Improves NG Power Plant Performance

Cleburne, TX - NG Power Plant

Scope of Work:

- Retrofit existing SGT6-5000F (501F) combustion turbine with an inlet chilling system:
 - New 1.74 MG TES tank
 - New 3,800-ton modular CHW plant with cooling coils & energy management system

Coil Retrofit

Cleburne, TX - NG Power Plant

· Power Plant Performance:

Before - 227 MW @ 95°F DB / 75°F WB

After - 266 MW @ T2 of 50°F

Net - 37.5 MW (16.6% Increase)

